Graph Convolutional Networks
- 비정형화된 구조에 사용가능.
System
- Structure : Representation, Computation.
- Entity : element, size, mass, ...
- Relation : property btw entities.
- Rule : relational inductive biases, structure를 바탕으로 DL 설계.
Graph representation
$$ Graph = G(X,A) $$
X : Node, Vertex
- Atoms in a molecule
A : Adjacency matrix
- Edges of a graph
- Connectivity, relationship
Molecular graphs
X = [ Atome type , # of Hs , # Valence , Aromaticity ]^T
$$ H_i^{l+1} = \sigma (AH^l W^l + b^l)$$
Permutation invariant
- Node-wise summation
$$ Z_G = \tau \left( \sum_{i\in G}MLP(H_i^l) \right) $$
- Graph gathering
$$ Z_G = \tau \left(\sum \sigma (MLP_1 (H_i^L , H_i^0)) \odot MLP_2(H_i^L) \right) $$
𝜏 : ReLU activation
σ : sigmoid activation
⊙ : element-wise matrix multiplication (Hadamard product0)
Attention, α
- Deeply learning molecular structure-property relationships using attention- and gate-augmented graph convolutional network, https://arxiv.org/abs/1805.10988
- Relation의 강도를 다르게 하기 위해 weight를 주는 것.
$$ H^{l+1} = \sigma\left( \sum_{j\in N(i)} \alpha_{ij} H_j^l W^l \right) $$
- GCN에 attention을 더해줌으로써 local feature를 더 잘 얻어낼 수 있다.
Classification (active vs. inactive)
- Predicting Drug–Target Interaction Using a Novel Graph Neural Network with 3D Structure-Embedded Graph Representation, https://doi.org/10.1021/acs.jcim.9b00387
- Pose prediction : PDBbind v.2018
- Virtual screening : DUD-E & MUV
Regression (binding affinity scoring)
- PotentialNet for Molecular Property Prediction, https://doi.org/10.1021/acscentsci.8b00507
- Gated recurrent unit
- PDBbind v.2007
- Refined train, Core test
Pros
- Protein과 ligand atom의 bond를 explicit하게 표현할 수 있음.
- Protein과 ligand를 compact하게 표현할 수 있음. (atom이 있냐, 이것들이 연결되어있는지 표현가능)
- Rotational 및 translational invariant함.
Cons
- 3차원 구조를 직관적으로 표현하기 어려움.
Reference
- GCN for virtual screening l 김우연, https://youtu.be/eCr1gIy2KDs
'Drug' 카테고리의 다른 글
Virtual screening 7 - Generalization (0) | 2021.12.12 |
---|---|
Virtual screening 6 - Hybrid (0) | 2021.12.12 |
Virtual screening 4 - 3D CNN (0) | 2021.12.12 |
Virtual screening 3 - Data sets (0) | 2021.12.11 |
Virtual screening 2 - AI (0) | 2021.12.11 |
댓글