Deep Neural Network (fully connected)
- Large number of parameters -> easy to be overfitted when data is small. or large memory consumption (GPU)
- Does not enforce any structure, e.g., local information (local feature를 찾아내는게 어렵다.)
Convolution Neural Network (weight sharing and convolving)
- Reduce the number of parameters (less overfitting)
3D CNN for virtual screening
- Grid representation
- Binding site
Atom type 별 channel을 만든다.
Atom position -> Atom density representation
Binary classification (active vs. inactive)
- AtomNet, ChEMBL-20 PMD: DUDE-like dataset derived from ChEMBL version 20.
- PAINS rule.
- Inactive : measured activity is higher than 30μmol.
- AutoDock Vina scoring.
- Adjustment logAUC
- Deep Learning은 Generalization이 잘 안된다.
Regression (scoring)
- Pearson's correlation (R) among predicted and experimental fiinities on blind targets.
- Force field energy
$$ f(r) = 1 - exp(-(r_{vdw}/r)) $$
- ResNet : skip connection with zero-padding.
- 4 molecular descriptors (4HTMD)
1) aromatic carbon 2) hydrogen bond acceptor 3) positive ionizable 4) negative ionizable
pros
- Protein-ligand 결합의 원천이 되는 3차원 결합구조를 반영할 수 있음.
- 3차원 구조를 반영하기 때문에 pose prediction이 가능함.
- Torsion angle과 같은 복잡한 3차원적 특징을 스스로 학습가능.
Cons
- Grid를 사용하기 때문에 grid 간격에 따라 정보의 손실이 있음.
- 3차원 구조를 사용하지만 protein residue와의 해석에 한계가 있음.
- Rotational 및 translational invariant 하지 않음.
Terminology
- Receptive field : 이미지의 local한 영역.
Reference
- 3D CNN for virtual screening l 김우연, https://youtu.be/eWz-nwDrgws
- Binary classification: active vs. inactive
: AtomNet: A Deep Convolutional Neural Network for Bioactivity Prediction in Structure-based Drug Discovery, https://arxiv.org/abs/1510.02855
: Protein–Ligand Scoring with Convolutional Neural Networks, https://doi.org/10.1021/acs.jcim.6b00740
- Regression - binding affinity scoring
: KDEEP: Protein–Ligand Absolute Binding Affinity Prediction via 3D-Convolutional Neural Networks, https://doi.org/10.1021/acs.jcim.7b00650
: RosENet: Improving Binding Affinity Prediction by Leveraging Molecular Mechanics Energies with an Ensemble of 3D Convolutional Neural Networks, https://doi.org/10.1021/acs.jcim.0c00075
- GNINA 1.0: molecular docking with deep learning, https://doi.org/10.1186/s13321-021-00522-2
: https://github.com/gnina/gnina
- Convolutional Neural Networks - Ep. 8 (Deep Learning SIMPLIFIED), https://youtu.be/JiN9p5vWHDY
- PySCF: the Python-based simulations of chemistry framework, https://doi.org/10.1002/wcms.1340
- Fast Rescoring Protocols to Improve the Performance of Structure-Based Virtual Screening Performed on Protein–Protein Interfaces, https://doi.org/10.1021/acs.jcim.0c00545
'Drug' 카테고리의 다른 글
Virtual screening 6 - Hybrid (0) | 2021.12.12 |
---|---|
Virtual screening 5 - GCN (0) | 2021.12.12 |
Virtual screening 3 - Data sets (0) | 2021.12.11 |
Virtual screening 2 - AI (0) | 2021.12.11 |
Virtual screening 1 - Intro (0) | 2021.12.10 |
댓글