1. Scanpy [ python ]
- Github : https://github.com/theislab/scanpy
- Paper : https://genomebiology.biomedcentral.com/articles/10.1186/s13059-017-1382-0
- Tutorial
: https://scanpy.readthedocs.io/en/stable/tutorials.html
# https://docs.conda.io/en/latest/miniconda.html
cd DOWNLOAD_DIR
chmod +x Miniconda3-latest-VERSION.sh
./Miniconda3-latest-VERSION.sh
conda install seaborn scikit-learn statsmodels numba pytables
conda install -c conda-forge python-igraph leidenalg
pip3 install scanpy
2. Seurat [ R ]
- Home : https://satijalab.org/seurat/
- Github : https://github.com/satijalab/seurat
- Paper : https://doi.org/10.1016/j.cell.2021.04.048
- Tutorial : https://satijalab.org/seurat/articles/pbmc3k_tutorial.html
sudo apt-get install gfortran libcurl4-openssl-dev libssl-dev libxml2-dev cmake liblapack-dev libblas-dev libboost-dev libpng-dev build-essential libcurl4-gnutls-dev
# tutorial_data
wget https://s3-us-west-2.amazonaws.com/10x.files/samples/cell/pbmc3k/pbmc3k_filtered_gene_bc_matrices.tar.gz
install.packages("usethis")
install.packages("devtools")
devtools::install_github("thomasp85/patchwork")
install.packages("Seurat")
3. SCDE [ R ]
- Home : http://hms-dbmi.github.io/scde/index.html
- Tutorial : http://hms-dbmi.github.io/scde/tutorials.html
wget https://github.com/hms-dbmi/scde/archive/1.99.1.tar.gz
R CMD INSTALL 1.9.1.tar.gz
require(devtools)
devtools::install_version('flexmix', '2.3-13')
devtools::install_github('hms-dbmi/scde', build_vignettes = FALSE)
4. scvi-tools [ python ]
- Github : https://github.com/YosefLab/scvi-tools
pip3 install scvi-tools
For Trajectories and Velocity estimation,
Monocle3
destiny
Wishbone
PAGA
Velocyto
scVelo [ python ]
: RNA velocity generalized through dynamical modeling
- Homepage : https://scvelo.readthedocs.io/
- Github : https://github.com/theislab/scvelo/discussions
- Paper : Generalizing RNA velocity to transient cell states through dynamical modeling, https://www.nature.com/articles/s41587-020-0591-3
pip3 install scvelo
Data
- https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE96583
Reference
- The triumphs and limitations of computational methods for scRNA-seq, https://www.nature.com/articles/s41592-021-01171-x, http://pklab.med.harvard.edu/peterk/review2020/
- Training program, https://hbctraining.github.io/main/
- Analysis of single cell RNA-seq data, https://www.singlecellcourse.org/
- Bioinformatics Training, https://training.csx.cam.ac.uk/bioinformatics/search
'Tools' 카테고리의 다른 글
GSEA (0) | 2021.10.01 |
---|---|
SCSA - scRNA-seq Annotation (0) | 2021.09.01 |
Clustering - Fuzzy (0) | 2021.06.18 |
VCF reheader (0) | 2021.06.17 |
Clustering (0) | 2021.06.09 |
댓글