numpy - ravel_multi_index
arr = np.array([[3,6,6],[4,5,1]]) np.ravel_multi_index(arr, (7,6)) ## array([22, 41, 37]) r = 7 c = 6 print(np.arange(r*c)) print(np.arange(r*c).reshape(r,c)) print(np.arange(r*c).reshape(r,c)[[3,6,6],[4,5,1]]) ## [ 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41] ## [[ 0 1 2 3 4 5] ## [ 6 7 8 9 10 11] ## [12 13 14 15 16 17] ## ..
2021. 12. 21.
Virtual screening 3 - Data sets
Data formats - FASTA : sequence similarity calculation. - Structure Data File (SDF) includes 3D atomic coordinates, atom connectivity, molecular weight, logP, etc. - mol2 : comment, info, elements, coordinate, bond - Protein Data Bank (PDB) : element, amino acid, chain name, sequence number, coordinates - docking. Database DUD-E : http://dude.docking.org/, Virtual screening, Classification - Dir..
2021. 12. 11.
Virtual screening 1 - Intro
Protein-Ligand interaction 예측이 중요. - Assumptions : Rigid protein structure, no explicit solvation, no explicit pH dependence, etc. : 가정하고 있는 한계를 고려하여 계산한다. - Step1. Structure preparation (protein, ligand) : target 단백질에 대한 3D 구조를 준비. PDB, X-ray analysis, homology modeling, folding prediction. - Step2. Ligand preparation. : conformer search, charging state, protonation of aicds, etc - Step3. Bindi..
2021. 12. 10.